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Introduction 
 

In recent years, the dynamics of micropolar 

fluids, originating from the theory of 

Eringen (1), has been a popular area of 

research. This theory takes into account the 

effect of local rotary inertia and couple 

stresses arising from practical microrotation 

action. This theory is applied to suspensions, 

liquid crystals, polymeric fluids and 

turbulence. This behavior is familiar in 

many engineering and physical applications. 

Also, the study of boundary layer flows of 

micropolar fluids over a stretching surface  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

has received much attention because of their 

extensive applications in the field of 

metallurgy and chemical engineering for 

example, in the extrusion of polymer sheet 

from a die or in the drawing of plastic films.  

Na and Pop (2) investigated the boundary 

layer flow of a micropolar fluid past a 

stretching wall. Desseaux and Kelson (3) 

studied the flow of a micropolar fluid 

bounded by a stretching sheet. Takhar et al 

(4) studied the mixed convection flow of a 

micropolar fluid over a stretching sheet. 
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Elbashbeshy (5) investigated the heat 

transfer over a stretching surface with 

variable surface heat flux. Recently, Bachok 

et al. (6) studied the flow and heat transfer 

over an unsteady stretching sheet in a 

micropolar fluid with prescribed surface 

heat flux.  

 

Some specific industrial applications such as 

in polymer processing technology, which 

involve cooling of continuous strip or 

filaments, these elements, are drawn through 

a quiescent fluid. During the process, strips 

are sometimes stretched. The properties of 

the final product depend on the rate of 

cooling. Thus, rate of cooling can be greatly 

controlled by the use of electrically 

conducting fluid and the application of the 

magnetic field. Another use of application of 

magnetic field is found in the purification 

process of molten metal’s from non-metallic 

inclusions.  

 

Numerous attempts have been made to 

analysis the effect of transverse magnetic 

field on boundary layer flow heat and mass 

transfer characteristics of electrically 

conducting fluid. Vajravelu and Rollins (7) 

studied heat transfer in an electrically 

conducting fluid over a stretching surface by 

taking into account the magnetic field only.  
 

Prasad et al. (8) examined the influence of 

variable fluid properties on the 

hydromagnetic flow and heat transfer over a 

nonlinearly stretching sheet. In all these 

works effect of electric field has been 

neglected which is also one of the important 

parameters to alter the momentum and heat 

transfer characteristics in a Newtonian 

boundary layer flow. The problems of 

coupled heat and mass transfer in MHD 

two-dimensional flow, the effects of Ohmic 

heating have not been studied by previous 

authors. However, it is more realistic to 

include this effect to explore the impact of 

the magnetic field on the thermal transport 

in the boundary layer. Haque et al.(9) 

studied micropolar fluid behavior on steady 

magneto hydrodynamics free convection 

flow and mass transfer through a porous 

medium with heat and mass fluxes. 

Rebhi(10) studied unsteady natural 

convection heat and mass transfer of 

micropolar fluid over a vertical surface with 

constant heat flux. Olajuwon and Oahimire 

(11) studied the unsteady free convection 

heat and mass transfer in a MHD micropolar 

fluid in the presence of thermo diffusion and 

thermal radiation. 
 

In several physical problems such as fluids 

undergoing exothermic or endothermic 

chemical reactions, it is important to study 

the effects of heat generation and 

absorption. The presence of heat generation 

or absorption may alter the temperature 

distribution in the fluid which in turn affects 

the particle deposition rate in systems such 

as nuclear reactors, electronic chips, and 

semiconductor wafers. The exact modeling 

of internal heat generation or absorption is 

difficult but some simple mathematical 

models may express its average behavior for 

most physical situations. Cortell (12) studied 

the flow and heat-transfer in a porous 

medium over a stretching surface with 

internal heat generation or absorption. Heat 

generation/ absorption and viscous 

dissipation effects on MHD flow of a 

micropolar fluid over a moving permeable 

surface embedded in a non-Darcian porous 

medium has been studied by Mahmoud (13). 

Mostafa et al. (14) analyzes the MHD flow 

and heat transfer of a micropolar fluid over a 

stretching surface with heat generation 

(absorption) and slip velocity. Khedr et 

al.(15) studied MHD flow of a micropolar 

fluid past a stretched permeable surface with 

heat generation or absorption. Abo-Eldahab 

and Abd El-Aziz (16) studied MHD three-

dimensional flow over a stretching sheet in a 

non-Darcian heat generation or absorption 

effects. 
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Damseh et al. (17) investigate the combined 

heat and mass transfer by natural convection 

of a micropolar, viscous and heat generating 

or absorbing fluid flow near a continuously 

moving vertical permeable infinitely long 

surface in the presence of a first-order 

chemical reaction. Kandasamy et al.(18) 

studied the nonlinear MHD flow, with heat 

and mass transfer characteristics, of an 

incompressible, viscous, electrically 

conducting, Boussinesq fluid on a vertical 

stretching surface with chemical reaction 

and thermal stratification effects. 

Seddek(19) studied the effects of chemical 

reaction, thermophoresis and variable 

viscosity on steady hydromagnetic flow with 

heat and mass transfer over a flat plate in the 

presence of heat generation/absorption. Patil 

and Kulkarni(20) studied the effects of 

chemical reaction flow of a polar fluid 

through porous medium in the presence of 

internal heat generation. 

 

The present study contains an analysis of the 

effects of magnetohydrodynamic laminar 

flow of a micropolar fluid over an unsteady 

stretching sheet by taking heat source/sink, 

mass transfer and chemical reaction into 

account. Using the similarity 

transformations, the governing equations 

have been transformed into a set of ordinary 

differential equations, which are nonlinear 

and cannot be solved analytically, therefore, 

fourth order Runge-Kutta method along with 

shooting technique has been used for solving 

it.  

 

The results for velocity, microrotation, 

temperature and concentration functions are 

carried out for the wide range of important 

parameters namely, material parameter, 

magnetic parameter, unsteadiness parameter, 

heat source/sink and chemical reaction 

parameter. The skin friction, the rate of heat 

transfer and the rate of mass transfer have 

also been computed. 

Mathematical Formulation 

 

Consider an unsteady, two-dimensional 

laminar flow of an incompressible 

micropolar fluid over a stretching sheet. At 

time t=0, the sheet is impulsively stretched 

with velocity ( , )wU x t  along the x -axis, 

keeping the origin fixed in the fluid of 

ambient temperature T∞ and ambient 

temperature C∞. The stationary Cartesian 

coordinate system has its origin located at 

the leading edge of the sheet with the 

positive x -axis extending along the sheet, 

while the y -axis is measured normal to the 

surface of the sheet. 

 

A schematic representation of the physical 

model and coordinates system is depicted in 

Fig. A. A uniform magnetic field of strength 

B0 is assumed to be applied in the positive 

y-direction normal to the plate. The 

magnetic Reynolds number of the flow is 

taken to be small enough so that the induced 

magnetic field is negligible. Hall effects and 

Joule heating are negligible.  

 

The level of concentration of foreign mass is 

assumed to be low, so that the Soret and 

Dufour effects are negligible. Under these 

assumptions along with the Boussinesq and 

boundary layer approximations, the system 

of equations, which models the flow is given 

by 

 

Continuity equation 

 

0
u v

x y

 
 

 
                                                                      

             (2.1) 

Linear momentum equation 

 
22

0

2

Bu u u u N
u v u

t x y y y

  

  

      
     

     

                                                 (2.2) 
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Angular momentum equation 

 
2

2
2

N N N N u
j u v N

t x y y y
  

       
       

       
                                                (2.3) 

Energy equation 

 

             
2

2
( )

T T T T
u v q T T

t x y y
 

   
    

   
                                                       

(2.4) 

 

Species equation  

 
2

02
( )

C C C C
u v D k C C

t x y y


   
    

   
                                                            

(2.5) 

 

The boundary conditions for the velocity, 

temperature and concentration fields are   

 

, 0, , ,w n
w

q Mu T C
u U v N m

y y k y D

  
       

  

       at    0y       

 

0, 0, ,u N T T C C            as   

y            (2.6) 

 

where m is the boundary parameter with 0 

≤m ≤1 (21), u and v are the velocity 

components in the x - and y - directions, 

respectively, T is the fluid temperature in the 

boundary layer, C is the fluid temperature in 

the boundary layer, N is the microrotation or 

angular velocity, and j , γ , μ, κ, ρ, and   are 

the microinertia per unit mass, spin gradient 

viscosity, dynamic viscosity, vortex 

viscosity, fluid density and thermal 

diffusivity, respectively. It is assumed that 

the stretching velocity ( , )wU x t , the surface 

heat flux ( , )wq x t and the surface mass 

flux ( , )nM x t  are of the forms 

( , ) , ( , ) , ( , )
1 1 1

w w n

ax bx cx
U x t q x t M x t

dt dt dt
  

  

                                                 
(2.7) 

 

where a , b ,c and d are constants with 

0, 0, 0a b c   and 0d   (with 1dt  ), 

and both a and d have dimension time 
−1

. It 

should be noted that at t=0 (initial motion), 

equations. (2.1) - (2.4) describe the steady 

flow over a stretching surface. These 

particular forms of ( , )wU x t , ( , )wq x t and 

( , )nM x t  have been chosen in order to be 

able to devise a new similarity 

transformation, which transforms the 

governing partial differential equations (2.1) 

- (2.4) into a set of ordinary differential 

equations, thereby facilitating the 

exploration of the effects of the controlling 

parameters (see Andersson et al. (22)).  

 

As was shown by Ahmadi (21), the spin-

gradient viscosity γ can be defined as 

 

 

                                                                  

(2.8) 

 

where K = κ/μ is the dimensionless viscosity 

ratio and is called the material parameter.  

 

The continuity equation (2.1) is satisfied by 

the Cauchy Riemann equations 

 

u
y



   and  v x


 

            

            (2.9)
 

 

where ( , )x y  is the stream function. 
 

In order to transform equations (2.2) to (2.6) 

into a set of ordinary differential equations, 

the following similarity transformations and 

dimensionless variables are introduced. 

 

( / 2) (1 / 2)j K j      
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 
1/ 2

( )

w

f
xU





 , 

wU
y

x



 , 

1/2

( )w
w

U
N U g

x




 
  

 
, 

1/ 2
( )

( ) w

w

Uk T T

q x
 


  

  
 

 

,

1/ 2
( )

( ) w

n

Uk C C

M x
 


  

  
 

, 

2

0

w

B
M

U




 ,

d
S

a
 ,    0Q k

Q
a

 ,  Pr



 , 

Sc
D


  (2.10) 

 

where ( )f  is the dimensionless stream 

function, θ - dimensionless temperature,   - 

dimensionless concentration, η - similarity 

variable, M - the Magnetic parameter, S- the 

unsteadiness parameter, Q- the heat 

source/sink parameter, Pr- the Prandtl 

number and Kr-the chemical reaction 

parameter. 

 

In view of equations (2.9) and (2.10), the 

equations (2.2) to (2.6) transform into  

2 1
(1 ) ' ' ' ' '' 0

2
K f ff f Kg Mf S f f

 
         

 
                            (2.11) 

 

3 1
1 '' ' ' (2 '') ' 0

2 2 2

K
g fg f g K g f S g g

   
          

   

           (2.12) 

 

1 1
" ' ' ' 0

Pr 2
f f Q S     

 
      

 
                

           (2.13)  

 

1
" ' ' 0f f Kr

Sc
          

                                            (2.14) 

 

The corresponding boundary conditions are: 

 

(0) 0, '(0) 0, ''(0), '(0) 1, '(0) 1f f g mf         

                        

 

' 0, 0, 0, 0f g                                   

as                                (2.15) 

 

where the primes denote differentiation with 

respect to   
 

The physical quantities of interest are the 

skin friction coefficient fC , the local Nusselt 

 

number Nu and Sherwood number Sh which 

are defined as 

 

2
/ 2

w
f

w

C
U




  ,    ( )

w

w

xq
Nu

k T T


 , 

( )

n

w

xM
Sh

k C C


  

 

where the wall shear stress w  , the heat flux 

wq and mass flux nM are given by 

 

0

( )w

y

u
N

y
   



 
   

 
,   

0

w

y

T
q k

y


 
   

 
   

0

n

y

C
M k

y


 
   

 
 

 

Thus, we get

 

 

1
Re 1 ''(0),

2 2
f x

K
C f

 
  
    

1/ 2/ Re 1/ (0)xNu  , 1/ 2/ Re 1/ (0)xSh 
 

 

Our main aim is to investigate how the 

values of f ′′(0), 1/ (0)  and 1/ (0) vary in 

terms of the governing parameters. 
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Solution of the Problem 

 

The set of coupled non-linear governing 

boundary layer equations (2.11) - (2.14) 

together with the boundary conditions (2.15) 

are solved numerically by using Runge-

Kutta fourth order technique along with 

shooting method. First of all, higher order 

non-linear differential Equations (2.11) - 

(2.14) are converted into simultaneous linear 

differential equations of first order and they 

are further transformed into initial value 

problem by applying the shooting technique 

(Jain et al.(23)). The resultant initial value 

problem is solved by employing Runge-

Kutta fourth order technique. The step size 

 =0.05 is used to obtain the numerical 

solution with five decimal place accuracy as 

the criterion of convergence. From the 

process of numerical computation, the skin-

friction coefficient, the Nusselt number and 

the Sherwood number, which are 

respectively proportional to ''(0),1/ (0)f   

and1/ (0) , are also sorted out and their 

numerical values are presented in a tabular 

form. 

 

Results and Discussion 

 

The governing equations (2.11) - (2.14) 

subject to the boundary conditions (2.15) are 

integrated as described in section 3. In order 

to get a clear insight of the physical 

problem, the velocity, temperature and 

concentration have been discussed by 

assigning numerical values to the parameters 

encountered in the problem. The effects of 

various parameters on velocity profiles in 

the boundary layer are depicted in Figs. 1-4. 

The effects of material parameter on 

Angular velocity profiles in the boundary 

layer are depicted in Figs.5-8. The effects of 

various parameters on temperature profiles 

in the boundary layer are showen in Figs. 9-

14. The effects of various parameters on 

concentration profiles in the boundary layer 

are depicted in Figs. 15-20.   

 

Fig. 1 shows the dimensionless velocity 

profiles for different values of magnetic 

parameter (M). It is seen that, as expected, 

the velocity decreases with an increase of 

magnetic parameter.  The magnetic 

parameter is found to retard the velocity at 

all points of the flow field. It is because that 

the application of transverse magnetic field 

will result in a resistive type force (Lorentz 

force) similar to drag force which tends to 

resist the fluid flow and thus reducing its 

velocity. Also, the boundary layer thickness 

decreases with an increase in the magnetic 

parameter. Fig.2 illustrates the effect of the 

unsteadiness parameter (S) on the velocity 

field. It is observed that as the unsteadiness 

parameter increases, the velocity field 

decreases. The effect of material parameter 

(K) on the velocity is illustrated in Fig.3. It 

is noticed that the velocity increases with 

increasing values of the material parameter.   

 

Fig. 4 shows the variation of the velocity 

with the boundary parameter (m). It is 

noticed that the velocity decreases with an 

increase in the boundary parameter. 

Fig.5 illustrates the effect of magnetic 

parameter on the angular velocity.  It is 

noticed that as the magnetic parameter 

increases, the angular velocity increases. 

Fig. 6 shows the variation of the angular 

velocity with the unsteadiness parameter. It 

is noticed that the angular velocity thickness 

increases near the sheet ( ≤ 1) and 

decreases for ( > 1) with an increase in the 

unsteadiness parameter. Fig. 7 depicts the 

angular velocity with the material parameter. 

It is noticed that the angular velocity 

decreases with an increase in the material 

parameter. The effect of the boundary 

parameter on the angular velocity is 

illustrated in Fig.8. It is observed that as the 

boundary parameter increases, the angular 
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velocity increases.  The effect of the 

magnetic parameter on the temperature is 

illustrated in Fig.9. It is observed that as the 

magnetic parameter increases, the 

temperature increases. Fig. 10 depicts the 

thermal boundary-layer with the 

unsteadiness parameter. It is noticed that the 

thermal boundary layer thickness decreases 

with an increase in the unsteadiness 

parameter.  
 

Fig. 11 depicts the thermal boundary-layer 

with the material parameter. It is noticed that 

the thermal boundary layer thickness 

decreases with an increase in the material 

parameter.   

Fig.12 illustrates the effect of the boundary 

parameter on the temperature.  It is noticed 

that as the boundary parameter increases, the 

temperature increases. Fig. 13 shows the 

variation of the thermal boundary-layer with 

the Prandtl number (Pr). It is noticed that 

the thermal boundary layer thickness 

decreases with an increase in the Prandtl 

number. Fig. 14 shows the variation of the 

thermal boundary-layer with the heat 

source/sink parameter (Q). It is observed 

that the thermal boundary layer thickness 

increases with an increase in the heat 

source/sink.   

 

Table.1 Comparison of for Different Values of S and Pr when K=Q=Sc=Kr=m=0 

 

S Pr (0)  

Elbashbeshy(5) Bachok et al. (6) Present Study 

0 

0 

1 

1 

0.72 

1 

0.72 

1 

1.2253 

1.0000 

1.2367 

1.0000 

0.9116 

0.8591 

1.2258 

1.0000 

0.9116 

0.8591 

 

 

Fig.A Schematic Representation of the Physical Model and Coordinate System 
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Fig.1 Velocity Profiles for Different Values of M 
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Fig.2 Velocity Profiles for Different Values of S 
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Fig.3 Velocity Profiles for Different Values of K 
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Fig.4 Velocity Profiles for Different Values of m 
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Fig.5 Angular velocity Profiles for Different Values of M 
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Fig.6 Angular Velocity Profiles for Different Values of S 
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Fig.7 Angular Velocity for Different Values of K 
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Fig.8 Angular Velocity for Different Values of m 
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Fig.9 Temperature for Different Values of M 
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Fig.10 Temperature for Different Values of S 
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Fig.11 Temperature for Different Values of K 

 

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0



 K=0.0

 K=1.0

 K=2.0

 K=4.0

  

S=M=1, m=0.5, Pr=0.7, Sc=0.2, Q=0.1, Kr=0.1

 
 

Fig.12 Temperature for Different Values of m 
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Fig.13 Temperature for Different Values of Pr 
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Fig.14 Temperature for Different Values of Q 
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Fig.15 Concentration for Different Values of M 
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Fig.16 Concentration for Different Values of S 
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Fig.17 Concentration for Different Values of K 
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Fig.18 Concentration for Different Values of m 
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Fig.19 Concentration for Different Values of Sc 
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Fig.20 Concentration for Different Values of Kr 
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Fig.21 Variation of the Skin-friction with K for Different M 
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Fig.22 Variation of the Nusselt Number with K for Different Q 
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Fig.23 Variation of the Sherwood Number with K for Different Kr 
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The effect of magnetic parameter on the 

concentration field is illustrated Fig.15.  As 

the magnetic parameter increases the 

concentration is found to be increasing. The 

effect of unsteadiness parameter on the 

concentration field is illustrated Fig. 16. It is 

noticed that the concentration boundary 

layer thickness decreases with an increase in 

the unsteadiness parameter. The effect of 

material parameter on the concentration 

field is illustrated Fig. 17. It is noticed that 

the concentration boundary layer thickness 

decreases with an increase in the material 

parameter. Fig. 18 illustrates the effect of 

boundary parameter on the concentration. 

As the boundary parameter increases, an 

increasing trend in the concentration field is 

noticed. The influence of the Schmidt 

number (Sc) on the concentration field is 

shown in Fig.19. It is noticed that the 

concentration decreases with the increase of 

the Schmidt number. The influence of the 

chemical reaction parameter (Kr) on the 

concentration field is shown in Fig.20. It is 

noticed that the concentration decreases with 

the increase of the chemical reaction 

parameter. 

 

Fig. 21 shows the variation of the skin 

friction with for different values of magnetic 

parameter. It is observed that the skin 

friction decreases with an increase in the 

magnetic parameter. Fig. 22 depicts the 

variation of the heat transfer rate with for 

different values of heat source/sink 

parameter. It is noticed that the heat transfer 

rate decreases with an increase in the heat 

source/sink parameter. Fig. 23 shows the 

variation of the mass transfer rate with for 

different values of chemical reaction 

parameter. It is observed that the mass 

transfer rate increases with an increase in the 

chemical reaction parameter.  
 

For validation of the numerical method used 

in this study, results for  0 , were 
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compared with those of Elbabeshy (5) and 

Blocks et al. (6) for various values of S and 

Pr. The quantitative comparison is shown in 

Table 1 and it is found to be in excellent 

agreement. 
 

Conclusion 

 

In the present chapter, an unsteady 

magnetohydrodynamic (MHD) laminar flow 

past a stretching sheet with prescribed 

surface heat and mass flux by taking mass 

transfer, heat source or sink and chemical 

reaction effects into account, is analyzed. 

The governing equations are approximated 

to a system of non-linear ordinary 

differential equations by similarity 

transformation. Numerical calculations are 

carried out for various values of the 

dimensionless parameters of the problem. It 

has been found that 
 

1. The velocity decreases while the angular 

velocity, temperature and concentration 

functions increase with an increase in the 

magnetic parameter. 

2. The velocity increases while the angular 

velocity, temperature and concentration 

functions decrease with an increase in 

the material parameter. 

3. The heat source/sink enhances the 

temperature. 

4. The chemical reaction reduces the 

concentration. 

5. The skin friction reduces as the magnetic 

parameter increases and the increases as 

the material parameter increases. 

6. The heat source/sink reduces the heat 

transfer rate. 

7. The chemical reaction or material 

parameter enhances the mass transfer 

rate. 
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